原文链接:告别无用功|人工智能该如何学习
大家好,我是泰哥。
本文可谓是千呼万唤使出来,很多同学问我,AI方向的知识多而杂,哪些该重点学习?学习路径又是怎么样的呢?
今天,我将自己的学习路径及我所参考的资料全部免费分享出来,愿大家的AI学习进阶之路上多一些“温度”。
在我学习人工智能的过程中,主要有以下两个途径:
AI知识大体可以分为5个模块,接下来我会依次介绍每个模块的学习路径,最后给大家推荐几个我入门时做过的项目,帮助大家快速入门人工智能。
在AI领域,目前大部分程序员都使用作为第一语言。 学会上述操作后就入门了,但一定要将基础部分的内容掌握扎实。进阶操作在前期不着急学习,可以在日后使用过程中逐渐精通,比如函数式编程、多线程使用、异常处理与日志管理等等。
这里给大家推荐两本学习必备书籍。《Python编程》中每个知识点下都有对应示例,非常直观。入门后,《流畅的Python》可以帮你精通,完成从小白到大神的进阶。
原文链接:告别无用功|人工智能该如何学习
很多同学看到数学就头疼,其实模型通用的基本数学原理并不难,难的公式在之后的模型中遇见时再逐个击破即可。
切记前期不要深陷到数学知识中去深挖!!
首先大家不要惧怕数学。在遇到我们不会的数学公式时,我们要更多的思考这个公式能解决什么问题,而不是一直纠结公式的推导与计算。
比如梯度下降和反向传播的根本原理就是求导,全局最优解就是极值点,所以最优解一定在导数的某一个拐点处,类似的很多知识都是高中就学过的。
在深度学习中,线代最重要的应用就是高维数据相乘运算,可以大大提升运算速度。
概率论的知识在AI体系中看似不那么重要,但却无处不在。从数据预处理、建模、模型参数初始化及归一化,到最后的结果分析都与概率论息息相关。
常用指标很多是大家耳熟能详的,比如均值、方差。如果你之前没有很强的概率论功底,建议你掌握常用知识后,在实际中遇到不懂的问题时要养成查阅的习惯。这部分知识不会太难,但是对理解模型与过程十分的重要:
人工智能必备数学基础全套课程:此课程将高数、概率论、线代知识进行浓缩,针对人工智能领域开发的数学综合课程,都是入门必备和模型中常见的数学知识。
网易可汗学院统计学公开课:统计学入门课程,涵盖统计学所有的主要知识。
这里推荐的是3本经典教材与1本我个人非常喜欢的《数学之美》。3本教材书无需多述,《数学之美》把抽象、深奥的数学方法解释得通俗易懂,非常精彩,很多模型原理都可以在其中找到你想要的回答。
原文链接:告别无用功|人工智能该如何学习
在具备一定的编程能力与数学功底后,我们就可以对实际问题进行分析与挖掘。
很多同学问算法工程师需要学爬虫吗?我的回答是:算法的重点在于建模,算法工程师掌握基本爬虫知识就好,因为单位一般都有专门的采集工程师。
但是数据分析师一定需要学。因为数据分析师需要具备自主获取数据的能力,从而进行数据分析。
不论你做数分还是算法,、和都是必须掌握的。但这部分内容很杂,没必要进行系统学习,就好像中的函数一样。
【莫烦】Numpy&Pandas :此视频一共只有3小时,但是可以以最快的速度了解三剑客的基本使用。
Numpy中文官方网站
Pandas中文官方网站
Matplotlib中文官方网站
大家可以网上找一些常用方法多浏览浏览,脑子里留个印象就行,在实际使用的时候再去查具体怎么用。就算没印象,我也建议大家在实际使用时先去官网上查有没有对应的内置方法,如果没有再自己写函数实现。
后续我也会总结三剑客的高频使用方法。
原文链接:告别无用功|人工智能该如何学习
从机器学习开始就正式进入到了人工智能的领域。涉及的算法都是白盒算法,使用可解释的数学公式去拟合数据、学习参数然后进行预测,最后对模型进行评估。
这部分的知识需要大家从数据处理过程开始就多进行总结与反思:
机器学习算法因为都有可解释性,所以大家需要搞懂数学原理,并知道模型之间的差异、以及适用于什么数据集。
对于回归任务与分类任务,我们也需要知道各种评估指标间的差异与使用场景。
吴恩达机器学习:此教程以理论为主,对小白极为友善,就算没有基础,也能以最快的速度入门机器学习。
菜菜的sklearn:此教程以实践为主,从数据处理、特征工程、到模型算法都会给予代码进行实操讲解,并将每个参数都讲的非常细致。
这里推荐两本学习必备书籍。周志华老师的《机器学习(西瓜书)》与李航老师的《统计学习方法》。
这两本书非常经典,讲述了机器学习核心数学理论与模型推导全过程,是夯实理论的不二选择。强烈推荐将书籍与上述推荐视频相结合进行学习。
原文链接:告别无用功|人工智能该如何学习
深度学习是黑盒算法,不具可解释性,初学者通常会觉得它比较神秘。但它的基础神经网络,可以说是由众多个逻辑回归函数组成,所以在学机器学习时一定要将逻辑回归彻彻底底学明白。
这部分给大家推荐书籍《图解深度学习》与《深度学习》。前者用图解的方式剖析了深度学习的原理,适合初学者;后者是深度学习领域奠基性的经典教程。
吴恩达深度学习:首推荐还是吴恩达老师的课程:
白板推导系列:机器学习与深度学习数学原理板书推导,极为硬核。
在学完理论知识后,我们就可以找一些项目进行实战了。
我本人是算法工程师,在此对自然语言处理方向推荐几个入门练手小项目:
实体识别:此项目使用了多种不同的模型(、、、)来解决中文命名实体识别问题。
对话机器人:此项目为医疗对话问答机器人,主要基于知识图谱实现。
在对进行初步了解后,大家可以根据自身情况在上多找一些感兴趣的相关项目进行研究,不仅仅要知道代码实现细节,更要思考它能实际解决的业务问题。
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【】
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能 AI,并能用代码将大模型和业务衔接。
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
本网信息来自于互联网,目的在于传递更多信息,并不代表本网赞同其观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,并请自行核实相关内容。本站不承担此类作品侵权行为的直接责任及连带责任。如若本网有任何内容侵犯您的权益,请及时联系我们,本站将会在24小时内处理完毕,E-mail:975644476@qq.com
本文链接:http://chink.83seo.com/news/7303.html