本文数据代码获取方式,公众号:程序员大飞,后台回复关键字:圣诞树
大家好,我是 zeroing,昨天是圣诞节,不知道大家过开心不,反正我是挺开心的,晚上室友都出去了自己一个人在宿舍,为所欲为~ 真的是爽歪歪~
本篇文章将用 Python 来实现图片中的圣诞树的识别、标记,可理解为计算机视觉中的物体检测,先声明一下哈这里没有用到神经网络,都是传统方法
先看一下效果,以下是原图
下面是最终检测出来的效果图:
图中的圣诞树的外轮廓都用红线给标记出来了,效果看起来还不错吧~,下面是算法实现的整体思路,分为三个部分
上面展示的6张图像中,因为彩灯原因,圣诞树在整个图片中呈现出偏亮、色调偏暖,与背景偏冷、偏青色形成对比;
根据上面提到的思路先对圣诞树上特征点进行提取,这里对图像分别以亮度、色调、饱和度三个角度对图像做了条件筛选,筛选出图像中目标特征点集,筛选标准如下
这里简单介绍一下 HSV ,HSV 为图片的一种颜色空间,与 RGB 三通道相似,RGB 分别表示红、绿、蓝三种通道;而 HSV 则代表 hue(色调),saturation(饱和度), value (亮度);
根据上面三个筛选条件,对图像进行处理,最终得到一个黑白相间的二值化图像,这里用 numpy 中的 和 方法来聚合上面的三种条件;
从上图可以看到,图片中的黑点即提取到的特征点(圣诞树),基本大致轮廓已经出来了,但会有少许噪点,见图二、图四,建筑中的灯光、地平线特征也被提取出来了,但这些不是我们所需要的,所以需要下面的一个步骤:聚类,来剔除这些噪点
上一步得到特征点之后,下面就对特征点集进行聚类,关于点集聚类,这里用基于空间密度的 DNSCAN 算法,这个算法已经被封装到 scikit-learn包中,使用时直接调用即可,但因为涉及一些参数设置问题,使用时需要注意两个参数:
特征点分类后,最终将圣诞树特征点部分全部标为红色,效果如下:
可以看到图 2,3,4 中的特征点分别分为两类,用不同的颜色进行标记;后面再做一次条件筛选:只取图片中特征点数量最多的类(圣诞树),就可以把图像中的噪点去除
最后这一步就简单多了,有了特征点集,利用 包 中的 ConvexHull 方法计算 凸包 ,之后再利用 将凸包在原图上进行绘制
文章中的一些技术点是值得借鉴,例如前面提到的用色调、饱和度作为阈值条件来筛选特征点,及后面的 DBSCAN 聚类算法的使用;这些 Idea 不仅局限在圣诞树上,也可以用于检测其它的一些物体上面来,但需要多思考,多实践
最后在这里提一下为什么聚类算法这里用 DBSCAN,而不是经典的 KMeans;因为 KMeans 分类时需要设置类别数量(类别数量是我们提前没有办法确定的),并且在分类时仅以欧式距离作为参考,最终分类结果并不理想,参照下图
KMeans 算法
DBSCAN 算法
文章中用到核心代码
启动脚本
好了,以上就是本篇文章的全部内容,如果觉得内容不错,求赞、求分享、求留言;最后感谢大家的阅读!
本网信息来自于互联网,目的在于传递更多信息,并不代表本网赞同其观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,并请自行核实相关内容。本站不承担此类作品侵权行为的直接责任及连带责任。如若本网有任何内容侵犯您的权益,请及时联系我们,本站将会在24小时内处理完毕,E-mail:975644476@qq.com
本文链接:http://chink.83seo.com/news/1041.html